SINEAX M561 / M562 / M563
 with 1,2 resp. 3 analog outputs
 Programmable Multi-Transducer for Industry

for the measurement of electrical variables in heavycurrent power system

Application

SINEAX M 561/M 562/M 563 (Fig.1) is a programmable transducer with a RS 232 C interface. M 561 supervises 1 variable (input) which is available on an analog output signal. Input and output are electrically isolated. M 562 resp. M 563 measure 2 resp. 3 variables simultaneously and generate $\mathbf{2}$ resp. $\mathbf{3}$ electrically isolated analog output signals.
The transducers are also equipped with an RS 232 serial interface to which a PC with the corresponding software can be connected for programming or accessing and executing useful ancillary functions.
The usual methods of connection, the types of measured variables, their ratings, the transfer characteristic for each output etc. are the main parameters that can be programmed.
The ancillary functions include displaying, recording and evaluation of measurements on a PC, the simulation of the outputs for test purposes and a facility for printing nameplates.
The transducer fulfils all the essential requirements and regulations concerning electromagnetic compatibility (EMC) and safety (IEC 1010 resp. EN 61 010). It was developed and is manufactured and tested in strict accordance with the quality assurance standard ISO 9001.

Features / Benefits

- Simultaneous measurement of several variables of a heavy-current power system

Measured variables	Nominal input current	Nominal input voltage
Current, voltage (rms), active/reactive/apparent power cos φ, sin φ, power factor		
RMS value of the current with wire		
setting range (bimetal measuring		57.7 to 400 V
function)	1 to 6 A	(phase-to-neutral)
resp.		
Slave pointer function for the mea-		100 to 693 V
surement of the RMS value IB		(phase-to-phase)
Frequency		
Average value of the currents with		
sign of the active power (power		
system only)		

- For all heavy-current power system variables
- Universal analog outputs (programmable)
- Input voltage up to 693 V (phase-to-phase)
- High accuracy: Class 0.2 (U, I) resp. 0.5 (all other quantities)
- Windows software with password protection for programming, data analysis, power system status simulation
- DC-, AC-power pack with wide power supply tolerance / Universal

C \Subset

Fig. 1. SINEAX M 563 transducer in housing P20/105 clipped onto a top-hat rail.

Fig. 2. Screen print-out from the configuration software (M563).

Fig. 3. Block diagram (M563).

SINEAX M561 / M562 / M563 with 1, 2 resp. 3 analog outputs Programmable Multi-Transducer for Industry

Symbols

Symbols	Meaning
X	Measured variable
X0	Lower limit of the measured variable
X1	Break point of the measured variable
X2	Upper limit of the measured variable
Y	Output variable
YO	Lower limit of the output variable
Y1	Break point of the output variable
Y2	Upper limit of the output variable
Y2 SW	Programmed upper limit of the output variable
\cup	Input voltage
Ur	Rated value of the input voltage
U 12	Phase-to-phase voltage L1-L2
U 23	Phase-to-phase voltage L2 - L3
U 31	Phase-to-phase voltage L3-L1
U1N	Phase-to-neutral voltage $\mathrm{L} 1-\mathrm{N}$
U2N	Phase-to-neutral voltage $\mathrm{L} 2-\mathrm{N}$
U3N	Phase-to-neutral voltage $\mathrm{L} 3-\mathrm{N}$
1	Input current
11	AC current L1
12	AC current L2
13	AC current L3
Ir	Rated value of the input current
IM	Average value of the currents ($11+12+13$)/3
IMS	Average value of the currents and sign of the active power (P)
IB	RMS value of the current with wire setting range (bimetal measuring function)
IBT	Response time for IB
BS	Slave pointer function for the measurement of the RMS value IB
BST	Response time for BS
φ	Phase-shift between current and voltage
F	Frequency of the input variable
Fn	Rated frequency
P	Active power of the system P = P1 + P2 + P3
P1	Active power phase 1 (phase-to-neutral L1 - N)

Symbols	Meaning	
P2	Active power phase 2 (phase-to-neutral L2 - N)	
P3	Active power phase 3 (phase-to-neutral L3-N)	
Q	Reactive power of the system $Q=Q 1+Q 2+Q 3$	
Q1	Reactive power phase 1 (phase-to-neutral L1 - N)	
Q2	Reactive power phase 2 (phase-to-neutral L2 - N)	
Q3	Reactive power phase 3 (phase-to-neutral L3-N)	
S	Apparent power of the system	
S1	Apparent power phase 1 (phase-to-neutral L1 - N)	
S2	Apparent power phase 2 (phase-to-neutral L2 - N)	
S3	Apparent power phase 3 (phase-to-neutral L3-N)	
Sr	Rated value of the apparent power of the system	
PF	Active power factor $\cos \varphi=P / S$	
PF1	Active power factor phase $1 \mathrm{P} 1 / \mathrm{S} 1$	
PF2	Active power factor phase $2 \mathrm{P} 2 / \mathrm{S} 2$	
PF3	Active power factor phase 3 P3/S3	
QF	Reactive power factor $\sin \varphi=\mathrm{Q} / \mathrm{S}$	
QF1	Reactive power factor phase 1 Q1/S1	
QF2	Reactive power factor phase 2 Q2/S2	
QF3	Reactive power factor phase 3 Q3/S3	
LF	Power factor of the system $L F=\operatorname{sgnQ} \cdot(1-\|P F\|)$	
LF1	Power factor phase 1 sgnQ1 • (1 - \|PF1 \mid)	
LF2	Power factor phase 2 sgnQ2 • (1 - PF2 \|)	
LF3	Power factor phase 3 sgnQ3 • (1 - \|PF3)
c	Factor for the intrinsic error	
R	Output load	
Rn	Rated burden	
H	Power supply	
Hn	Rated value of the power supply	
CT	c.t. ratio	
VT	v.t. ratio	

SINEAX M561 / M562 / M563 with 1, 2 resp. 3 analog outputs Programmable Multi-Transducer for Industry

Applicable standards and regulations

IEC 688 or EN 60688

IEC 1010 or EN 61010
iEC 529 or
EN 60529
IEC 1000-4-2/-3/-4/-5/-6

EN 55011

IEC 68-2-1/-2/-3/-6/-27
or
EN 60 068-2-1/-2/-3/-6/-27 Ambient tests
-1 Cold, -2 Dry heat, -3 Damp heat, -6 Vibration, -27 Shock

AC quantities
Terminal markings
Tests for flammability of plastic materials for parts in devices and appliances

Technical data

Measuring input Θ

\(\left.$$
\begin{array}{ll}\text { Nominal input voltage: } & \begin{array}{l}57.7 \text { to } 400 \mathrm{~V} \\
\text { (phase-to-neutral) } \\
\text { resp. }\end{array} \\
& \begin{array}{l}100 \text { to } 693 \mathrm{~V} \\
\text { (phase-to-phase) }\end{array}
$$

Nominal input current: \& 1 to 6 \mathrm{~A}\end{array}\right]\)| Admissible measuring | |
| :--- | :--- |
| range end values: | See page 4 under "System re-
 sponse", column "Condition", and
 pages 9 and 10 under "Description
 13 and 14" |
| Waveform: | Sinusoidal |
| Rated frequency: | 50 or 60 Hz |
| Consumption [VA]: | Voltage circuit: $\mathrm{U}^{2} / 400 \mathrm{k} \Omega$
 with external power supply
 Current circuit: $\leq 1^{2} \cdot 0.01 \Omega$ |

Thermal rating of inputs

Input variable	Number of inputs	Duration of overload	Interval between two overloads	
Current circuit	400 V single-phase AC system 693 V three-phase system			
12 A	-	continuous	-	
120 A	10	1 s	100 s	
120 A	5	3 s	5 min.	
250 A	1	1 s	1 hour	
Voltage circuit				
$480 \mathrm{~V} / 831 \mathrm{~V}^{1}$	-	continuous	-	
$600 \mathrm{~V} / 1040 \mathrm{~V}^{1}$	10	10 s	10 s	
$800 \mathrm{~V} / 1386 \mathrm{~V}^{\mathrm{V}}$	10	1 s	10 s	

${ }^{1}$ Maximum 264 V across the power supply when it is obtained from the measured variable with a power supply unit for $85 . . .230 \mathrm{~V}$ DC/AC and maximum 69 V with a power supply unit for $24 . . .60 \mathrm{~V}$ DC/AC.

Analog outputs Θ
For the outputs A, B and C :

Output variable Y	Impressed DC current	Impressed DC voltage
Full scale Y2	$1 \leq \mathrm{Y} 2 \leq 20 \mathrm{~mA}$	$5 \leq \mathrm{Y} 2 \leq 10 \mathrm{~V}$
Limits of output signal for input overload and/or $\quad \mathrm{R}=0$	$1.2 \cdot \mathrm{Y} 2$	40 mA
Rated useful range of output load	30 V	$0 \leq \frac{7.5 \mathrm{~V}}{\mathrm{Y} 2} \leq \frac{15 \mathrm{~V}}{\mathrm{Y} 2}$

The outputs A, B and C may be either short or open-circuited. They are electrically insulated from each other and from all other circuits (floating).

All the full-scale output values can be reduced subsequently using the programming software, but a supplementary error results.

SINEAX M561 / M562 / M563 with 1, 2 resp. 3 analog outputs Programmable Multi-Transducer for Industry

Reference conditions

Ambient temperature:
Pre-conditioning:
Input variable:
Power supply:
Active/reactive factor:
Frequency:
Waveform:
Output load:

Miscellaneous:
EN 60688

System response

Accuracy class:
(the reference value is the full-scale value Y 2)

Measured variable X	Condition	Accuracy class ${ }^{1 /}$
System: Active, reactive and apparent power	$\begin{aligned} & 0.5 \leq \mathrm{X} 2 / \mathrm{Sr} \leq 1.5 \\ & 0.3 \leq \mathrm{X} 2 / \mathrm{Sr}<0.5 \end{aligned}$	$\begin{aligned} & 0.5 \mathrm{c} \\ & 1.0 \mathrm{c} \end{aligned}$
Phase: Active, reactive and apparent power	$\begin{aligned} & 0.167 \leq \mathrm{X} 2 / \mathrm{Sr} \leq 0.5 \\ & 0.1 \leq \mathrm{X} 2 / \mathrm{Sr}<0.167 \end{aligned}$	$\begin{aligned} & 0.5 \mathrm{c} \\ & 1.0 \mathrm{c} \end{aligned}$
Power factor, active power and reactive power	$\begin{aligned} & 0.5 \mathrm{Sr} \leq \mathrm{S} \leq 1.5 \mathrm{Sr}, \\ & (\mathrm{X} 2-\mathrm{XO})=2 \\ & 0.5 \mathrm{Sr} \leq \mathrm{S} \leq 1.5 \mathrm{Sr}, \\ & 1 \leq(X 2-X 0)<2 \\ & 0.5 \mathrm{Sr} \leq \mathrm{S} \leq 1.5 \mathrm{Sr}, \\ & 0.5 \leq(X 2-X 0)<1 \\ & 0.1 \mathrm{Sr} \leq \mathrm{S}<0.5 \mathrm{Sr}, \\ & (X 2-X 0)=2 \\ & 0.1 \mathrm{Sr} \leq \mathrm{S}<0.5 \mathrm{Sr}, \\ & 1 \leq(X 2-X 0)<2 \\ & 0.1 \mathrm{Sr} \leq \mathrm{S}<0.5 \mathrm{Sr}, \\ & 0.5 \leq(X 2-X 0)<1 \end{aligned}$	$\begin{aligned} & 0.5 \mathrm{c} \\ & 1.0 \mathrm{c} \\ & 2.0 \mathrm{c} \\ & 1.0 \mathrm{c} \\ & 2.0 \mathrm{c} \\ & 4.0 \mathrm{c} \end{aligned}$
AC voltage	$0.1 \mathrm{Ur} \leq \mathrm{U} \leq 1.2 \mathrm{Ur}$	0.2 c
AC current/ current averages	$0.1 \mathrm{lr} \leq \mathrm{l} \leq 1.2 \mathrm{lr}$	0.2 c
System frequency	$\begin{aligned} & 0.1 \mathrm{Ur} \leq \mathrm{U} \leq 1.2 \mathrm{Ur} \\ & \text { resp. } \\ & 0.1 \mathrm{Ir} \leq \mathrm{I} \leq 1.2 \mathrm{Ir} \end{aligned}$	$0.15+0.03 \mathrm{c}$

[^0]Duration of the
measurement cycle:

Response time:

Approx. 0.6 to 1.6 s at 50 Hz , depending on measured variable and programming
$1 . . .2$ times the measurement cycle Factor c (the highest value applies):

Linear characteristic:

$$
c=\frac{1-\frac{Y 0}{Y 2}}{1-\frac{X 0}{X 2}} \text { or } c=1
$$

Bent characteristic: $X 0 \leq X \leq X 1$

$$
c=\frac{Y 1-Y 0}{X 1-X 0} \cdot \frac{X 2}{Y 2} \text { or } c=1
$$

$X 1<X \leq X 2$

$$
c=\frac{1-\frac{\mathrm{Y} 1}{\mathrm{Y} 2}}{1-\frac{\mathrm{X} 1}{\mathrm{X} 2}} \text { or } \mathrm{c}=1
$$

Fig. 4. Examples of settings with linear characteristic.

Fig. 5. Examples of settings with bent characteristic.
(System response inversely configurable)

Influencing quantities and permissible variations

Acc. to EN 60688

Safety

Protection class:	II (protection isolated, EN 61 010-1)	
Enclosure protection:	IP 40, housing (test wire, EN 60 529) IP 20, terminals (test finger, EN 60 529)	
Pollution degree:	2	
Installation category:	III (with $\leq 300 \mathrm{~V}$ versus earth) II (with > 300 V versus earth)	
Insulation test (versus earth):	Inputs:	$\begin{aligned} & 300 V^{2)} \\ & 600 V^{3)} \end{aligned}$
	Power supply:	230 V
	Outputs:	40 V

SINEAX M561 / M562 / M563 with 1, 2 resp. 3 analog outputs Programmable Multi-Transducer for Industry

Surge test:
Test voltage:

Power supply $\rightarrow \bigcirc$
DC, AC power pack (DC or $50 \ldots 60 \mathrm{~Hz}$)
Table 1: Rated voltages and tolerances

Rated voltage U_{N}	Tolerance
$24 \ldots 60 \mathrm{~V} \mathrm{DC} / \mathrm{AC}$	$\mathrm{DC}-15 \ldots+33 \%$
$85 \ldots 230 \mathrm{~V} \mathrm{DC} / \mathrm{AC}$	$\mathrm{AC} \pm 15 \%$

Consumption:
$\leq 5 \mathrm{~W}$ resp. $\leq 7 \mathrm{VA}$

Programming connector on transducer

The programming connector on the transducer is connected by the programming cable PRKAB 560 to the RS-232 interface on the PC. The electrical insulation between the two is provided by the programming cable.

Installation data

Housing:

Housing material:

Mounting:

Housing P20/105
See Section "Dimensioned drawings"
Lexan 940 (polycarbonate),
flammability class V-0 acc. to UL 94, self-extinguishing, non-dripping, free of halogen
For snapping onto top-hat rail $(35 \times 15 \mathrm{~mm}$ or $35 \times 7.5 \mathrm{~mm}$) acc. to EN 50022

Orientation:

Weight:

Terminals

Type:
Max. wire gauge:

Ambient tests

EN 60 068-2-6
Acceleration:
Frequency range:

Number of cycles:
EN 60 068-2-27:
Acceleration:

EN 60 068-2-1/-2/-3

Ambient conditions

Variations due to ambient temperature:

Nominal range of use for temperature:

Operating temperature:
Storage temperature:
Annual mean
relative humidity:
Altitude:
Indoor use statement

Any
Approx. 0.35 kg

Screw terminals with wire guards
$\leq 4.0 \mathrm{~mm} 2$ single wire or $2 \times 2.5 \mathrm{~mm} 2$ fine wire

Vibration
$\pm 2 \mathrm{~g}$
$10 \ldots 150 \ldots 10 \mathrm{~Hz}$, rate of frequency sweep: 1 octave/minute

10, in each of the three axes
Shock
$3 \times 50 \mathrm{~g}$
3 shocks each in 6 directions
Cold, dry heat, damp heat
$\pm 0.2 \% / 10 K$
0...15...30... $45^{\circ} \mathrm{C}$
(usage group II)
-10 to $+55^{\circ} \mathrm{C}$
-40 to $+85^{\circ} \mathrm{C}$
$\leq 75 \%$
2000 m max.

Dimensioned drawings

Fig. 6. SINEAX M 563 in housing P20/105 clipped onto a top-hat rail ($35 \times 15 \mathrm{~mm}$ or $35 \times 75 \mathrm{~mm}$, acc. to EN 50 022).

SINEAX M561 / M562 / M563 with 1, 2 resp. 3 analog outputs Programmable Multi-Transducer for Industry

Table 2: SINEAX M 561 (1 analogue output) SINEAX M 562 (2 analogue outputs)
SINEAX M 563 (3 analogue outputs) available as standard versions
The versions of the transducer below programmed with the basic configuration are available ex stock. It is only necessary to quote the Order No.:

Description / Basic programming		Marking	Order No.			
		M 561	M 562	M 563		
1. Mechanical design:	Housing P20/105 for rail mounting		561-4			
	Housing P20/105 for rail mounting	562-4				
	Housing P20/105 for rail mounting	563-4				
2. Rated input frequency:	50 Hz	1				
3. Power supply / external connection	24... 60 V DC/AC	1	158411	158437	146458	
(standard):	85... 230 V DC/AC	2	158429	158445	146440	
4. Full-scale output signal, output A:	$\mathrm{Y} 2=20 \mathrm{~mA}$	1				
5. Full-scale output signal, output B:	$\mathrm{Y} 2=20 \mathrm{~mA}$	1				
6. Full-scale output signal, output C:	$\mathrm{Y} 2=20 \mathrm{~mA}$	1				
7. Test certificate:	None supplied	0				
8. Configuration:	Basic configuration	0				
See Table 3 "Ordering Information"						
Basic configuration						
Input data						
9. Application:	4-wire, 3-phase system asymmetric load (NPS)	H				
10. Nominal input voltage:	Rated value Ur $=100 \mathrm{~V}$	A				
11. Nominal input current:	Rated value $\mathrm{Ir}=2 \mathrm{~A}$	9				
12. Primary rating:	Without specification of primary rating	0				
Output A						
13. Meas. variable/meas. range (part 1):	P1; X0 = 115.47 W; X2 = 115.47 W	2				
14. Meas. variable/meas. range (part 2):	Not used	0				
15. Signal range/system response:	$\mathrm{YO}=-20 \mathrm{~mA} ; \mathrm{Y} 2=20 \mathrm{~mA}$	1				
16. Characteristic:	Linear	1				
17. Limits:	Standard	1				
Output B						
18. Meas. variable/meas. range (part 1):	P2; X0 = 115.47 W; X2 = 115.47 W	2				
19. Meas. variable/meas. range (part 2):	Not used	0				
20. Signal range/system response:	$\mathrm{YO}=-20 \mathrm{~mA} ; \mathrm{Y} 2=20 \mathrm{~mA}$	1				
21. Characteristic:	Linear	1				
22. Limits:	Standard	1				
Output C						
23. Meas. variable/meas. range (part 1):	P3; X0 = 115.47 W; X2 = 115.47 W	2				
24. Meas. variable/meas. range (part 2):	Not used	0				
25. Signal range/system response:	$\mathrm{YO}=-20 \mathrm{~mA} ; \mathrm{Y} 2=20 \mathrm{~mA}$	1				
26. Characteristic:	Linear	1				
27. Limits:	Standard	1				

[^1]
SINEAX M561 / M562 / M563 with 1, 2 resp. 3 analog outputs Programmable Multi-Transducer for Industry

Table 3: Ordering information

DESCRIPTION		MARKING
1. Mechanical design		
Housing P20/105 for rail mounting		561-4
Housing P20/105 for rail mounting		562-4
Housing P20/105 for rail mounting		563-4
2. Nominal input frequency		
50 Hz		1
60 Hz		2
3. Power supply / Connectio		
$24 \ldots 60$ V DC/AC, external connection (standard)		1
$85 . .230 \mathrm{~V}$ DC/AC, external connection (standard)		2
$24 . . .60 \mathrm{~V}$ AC, internal connection from measuring input		3
$85 . .230 \mathrm{~V} \mathrm{AC}$, internal connection from measuring input		4
Lines 3 and 4: Not allowed with application E, F and J in feature 9		
Line 3:	ge $>60 \mathrm{~V}_{\text {L-L }}$ (lines A	
Line 4: Not	ge 57.74 V L-N (line	
Please refer to remark under feature 10		
. Output signal final value, output A		
Output A, Y2 $=20 \mathrm{~mA}$ (standard)		1
Output A, Y2 [mA]	($1 \leq \mathrm{Y} 2<20 \mathrm{~mA}$)	9
Output A, Y2 [V]	$(5 \leq Y 2 \leq 10 \mathrm{~V})$	Z
5. Output signal final value, output B Output B not used (at M561)		
		0
Output B, Y2 = 20 mA (standard)		1
Output B, Y2 [mA]	($1 \leq \mathrm{Y} 2<20 \mathrm{~mA}$)	9
Output B, Y2 [V]	$(5 \leq Y 2 \leq 10 \mathrm{~V})$	Z
6. Output signal final value, output C		
Output C not used (at M561 and M562)		0
Output C, Y2 $=20 \mathrm{~mA}$ (standard)		1
Output C, Y2 [mA]	($1 \leq \mathrm{Y} 2<20 \mathrm{~mA}$)	9
Output C, Y2 [V]	($5 \leq \mathrm{Y} 2 \leq 10 \mathrm{~V}$)	Z
7. Test records		
Without test records		0
With test records in German		D
With test records in English		E
8. Configuration Basic configuration programmed (see table 2)		
		0
Programmed to order		9
Line 0: No further details are necessary when specifying the basic configuration. Not allowed with internal power supply from measuring input. Line 9: The order must include a full specification of the following features 9 to 27 by means of a completely filled in form W 2407e (see appendix) with the configuration information.		

[^2]
SINEAX M561 / M562 / M563 with 1, 2 resp. 3 analog outputs Programmable Multi-Transducer for Industry

Continuation "Table 3: Ordering Information"

[^3]
SINEAX M561 / M562 / M563 with 1, 2 resp. 3 analog outputs Programmable Multi-Transducer for Industry

Continuation "Table 3: Ordering information"

DESCRIPTION					Application			Marking	
					A...F	G	H/J		
13. Output A, measured variable, range Part 1 (power, power factor, frequency)									
Part 1 not used								0	
P	System		X0:	X2:	\bullet	\bullet	\bullet	1	
P1	L1		XO:	X2:			-	2	
P2	L2		XO:	X2:			-	3	
P3	L3		XO:	X2:			\bullet	4	
Q	System		XO:	X2:	\bullet	\bullet	\bullet	5	
Q1	L1		XO:	X2:			\bullet	6	
Q2	L2		XO:	X2:			\bullet	7	
Q3	L3		X0:	X2:			\bullet	8	
S	System		X0:	X2:	\bullet	-	\bullet	A	
S1	L1		X0:	X2:			\bullet	B	
S2	L2		X0:	X2:			-	C	
S3	L3		XO:	X2:			-	D	
PF	System		XO:	X2:	\bullet	\bullet	\bullet	E	
PF1	L1		X0:	X2:			-	F	
PF2	L2		XO:	X2:			-	G	
PF3	L3		X0:	X2:			-	H	
QF	System		X0:	X2:	\bullet	-	\bullet	\checkmark	
QF1	L1		X0:	X2:			-	K	
QF2	L2		X0:	X2:			-	L	
QF3	L3		X0:	X2:			-	M	
LF	System		X0:	X2:	-	-	-	N	
LF1	L1		XO:	X2:			-	P	
LF2	L2		XO:	X2:			-	Q	
LF3	L3		XO:	X2:			-	R	
F	Frequency		X0:	X2:	-	\bullet	-	S	
Meas. variable:		Initial range XO	Final range X 2						
P, Q	System	$-\mathrm{X} 2 \leq \mathrm{X0} \leq 0.8 \mathrm{X} 2$	$0.3 \leq \mathrm{X} 2 / \mathrm{Sr} \leq 1.5$						
P, Q	L1/L2/L3	$-\mathrm{X} 2 \leq \mathrm{X0} \leq 0.8 \mathrm{X} 2$	$0.1 \leq \mathrm{X} 2 / \mathrm{Sr} \leq 0.5$						
S	System	$0 \leq \mathrm{X0} \leq 0.8 \mathrm{X} 2$	$0.3 \leq \mathrm{X} 2 / \mathrm{Sr} \leq 1.5$						
S	L1/L2/L3	$0 \leq \mathrm{X0} 50.8 \mathrm{X} 2$	$0.1 \leq \mathrm{X} 2 / \mathrm{Sr} \leq 0.5$						
PF, QF, LF		$-1 \leq \mathrm{XO} \leq(\mathrm{X} 2-0.5)$	$0 \leq \mathrm{X} 2 \leq 1$						
F		$45 \mathrm{~Hz} \leq \mathrm{XO} \leq(\mathrm{X} 2-1) \mathrm{Hz}$	$(\mathrm{XO}+1) \mathrm{Hz} \leq \mathrm{X} 2 \leq 65 \mathrm{~Hz}$						

SINEAX M561 / M562 / M563 with 1, 2 resp. 3 analog outputs Programmable Multi-Transducer for Industry

Continuation "Table 3: Ordering information"

DESCRIPTION				Application			Marking
				A...F	G	H/J	
14. Output A, measured variable, range Part 2 (current, voltage)							
Part 2 not used							0
I	System	X0:	X2:	\bullet			1
11	L1	X0:	X2:		\bullet	\bullet	2
12	L2	X0:	X2:		\bullet	\bullet	3
13	L3	X0:	X2:		\bullet	\bullet	4
IB	System (15 min)	X0:	X2:	\bullet			5
IB1	L1 (15 min)	X0:	X2:		\bullet	-	6
IB2	L2 (15 min)	X0:	X2:		\bullet	-	7
IB3	L3 (15 min)	X0:	X2:		\bullet	\bullet	8
BS	System (15 min)	X0:	X2:	\bullet			A
BS1	L1 (15 min)	X0:	X2:		\bullet	\bullet	B
BS2	L2 (15 min)	X0:	X2:		\bullet	\bullet	C
BS3	L3 (15 min)	X0:	X2:		\bullet	\bullet	D
IM	System	X0:	X2:		\bullet	\bullet	E
IMS	System	X0:	X2:		\bullet	-	F
U	System	X0:	X2:	\bullet			G
U1N	L1-N	X0:	X2:			\bullet	H
U2N	L2-N	X0:	X2:			\bullet	J
U3N	L3-N	X0:	X2:			\bullet	K
U12	L1-L2	X0:	X2:		\bullet	-	L
U23	L2-L3	X0:	X2:		\bullet	-	M
U31	L3-L1	X0:	X2:		\bullet	\bullet	N
Meas. variable: Initial range X0 Final range X2							
I, I1, I2 IB, IB IM IMS U Sys U L1- U L2- U L3- U L1- U L2- U L3-	30 $\times 0$ 0 $-X 2$ 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0.8 U \\ & 0.8 ~ U ~ \\ & 0.8 ~ U ~ \\ & 0 \end{aligned}$	$\begin{aligned} & 1.2 \mathrm{Ir} \\ & 1.2 \mathrm{Ir} \\ & 1.2 \mathrm{Ir} \\ & 1.2 \mathrm{Ir} \\ & 1.2 \mathrm{l} \\ & 1.2 \end{aligned}$				
15. Output A, signal range, system response Not used							0
Signal (Y0 ... Y2SW): - Y2 ... Y2							1
Signal (Y0 ... Y2SW): $0 \ldots$ Y2							2
Signal (YO ... Y2SW): 0.2 Y2 ... Y2							3
Signal YO ... Y2SW:							9
Signal inversely (Y2SW ... Y0): $\mathrm{Y} 2 \ldots$. \ldots Y2							A
Signal inversely (Y2SW ... Y0): Y2 ... 0							B
Signal inversely (Y2SW ... Y0): Y2 ... 0.2 Y2							C
Signal inversely Y2SW ... Y0:							Z
Lines 9 and Z : Y 2 = selected final value in feature 4 . Specify YO and Y 2 SW in mA or V , within the limits $1 \leq \mathrm{Y} 2 \mathrm{SW} \leq \mathrm{Y} 2$ (additional error!); - Y2SW $\leq \mathrm{Y} 0 \leq 0.2 \mathrm{Y} 2 S W$							

Table 3 continued on next page!

SINEAX M561 / M562 / M563 with 1, 2 resp. 3 analog outputs Programmable Multi-Transducer for Industry

Continuation "Table 3: Ordering information"

Table 3 continued on next page!

SINEAX M561 / M562 / M563 with 1, 2 resp. 3 analog outputs Programmable Multi-Transducer for Industry

Continuation "Table 3: Ordering Information"

SINEAX M561 / M562 / M563 with 1, 2 resp. 3 analog outputs Programmable Multi-Transducer for Industry

Electrical connections

Function			Connection
Measuring input			
AC current		IL2	4 / 6
		IL3	$7 / 9$
AC voltage		UL1	2
		UL2	5
		UL3	8
		N	11
Outputs Θ M561: Output A M562: Output A + B M563: Output A + B + C			
Analog	$\bigcirc \rightarrow A$	-	15
		+	16
	$\bigcirc-B$	-	17
		+	18
	$\bigcirc \rightarrow \mathrm{C}$	-	19
		+	20
Power supply \rightarrow O	AC	~	13
		~	14
	DC	-	13
		+	14
RS 232 C interface			

If power supply is taken from the measured voltage internal connections are as follow:

Application (system)	Internal connection Terminal / System	
Single-phase AC current	$2 / 11$	(L1-N)
4-wire 3-phase symmetric load	$2 / 11$	(L1 - N)
All other (apart from feature 9, lines E and F)	$2 / 5$	(L1 - L2)

Measuring inputs							
System / Application	Terminals						
Single-phase AC system							
4-wire 3-phase symmetric load I: L-1	Connect the voltage according to the following table for current measurement in L2 or L3:				$?$		
		Current transformer			2	11	
		L2	1	3	L2	N	
		L3	1	3	L3	N	

SINEAX M561 / M562 / M563 with 1, 2 resp. 3 analog outputs Programmable Multi-Transducer for Industry

Measuring inputs							
System / Application	Terminals						
3-wire 3-phase symmetric load I: L1	Connect the voltage according to the following table for current measurement in L2 or L3:						
3-wire 3-phase symmetric load Phase-shift U: L1 - L2 I: L1	Connect the voltage according to the following table for current measurement in L2 or L3:						
3-wire 3-phase symmetric load Phase-shift U: L3 - L1 I: L1	Connect the voltage according to the following table for current measurement in L 2 or L :						

SINEAX M561 / M562 / M563 with 1, 2 resp. 3 analog outputs Programmable Multi-Transducer for Industry

Measuring inputs	
System / Application	Terminals
3-wire 3-phase symmetric load Phase-shift U: L2 - L3 I: L1	Connect the voltage according to the following table for current measurement in L2 or L3:
3-wire 3-phase asymmetric load	
4-wire 3-phase asymmetric load	3 single-pole insulated voltage transformers in high-voltage system

SINEAX M561 / M562 / M563 with 1, 2 resp. 3 analog outputs Programmable Multi-Transducer for Industry

Relationship between PF, QF and LF

Fig. 7. Active power PF __, reactive power QF ------,
power factor LF -- - - -

Standard accessories

1 Operating Instructions for SINEAX M561/M562 resp. M563, in three languages: German, French, English
1 blank type label, for recording programmed settings

Table 4: Accessories and spare parts

Description	Order No.
Programming cable PRKAB 560	147779
Ancillary cable	143587
Configuration software M 560 Windows 3.1 or higher on CD in German, English, French, Italian and Dutch (Download free of charge under: http://www.camillebauer.com) In addition, the CD contains all configuration programmes presently available for Camille Bauer products.	146557
Operating Instructions M 561/M 562-4 B d-f-e in three languages: German, French, English	156316
Operating Instructions M 563-4 B d-f-e in three languages: German, French, English	143579

CAMILLE BAUER

Rely on us.

Camille Bauer Metrawatt Ltd
Aargauerstrasse 7
CH-5610 Wohlen / Switzerland
Phone: +41566182111
Fax: $\quad+41566182121$
info@cbmag.com
www.camillebauer.com

Appendix: CONFIGURATION FOR SINEAX M561 / M562 / M563

with 1, 2 resp. 3 analogue outputs and RS 232 interface
(see data sheet M561/M562/M563 Le, Table 3: "Ordering information")

Customer / Agent:
Order No. / Item:
No of instruments:
Type of instrument (marking):

Date:
Delivery date:
\qquad

9. Application

System
10. Nominal input voltage, rated value

Ur =
11. Nominal input current, rated value

Ir =
12. Primary transformer
$\mathrm{V} T=\ldots \mathrm{kV}$
$C T=$ A
Specify transformer ratio primary, e.g. $33 \mathrm{kV}, 1000 \mathrm{~A}$
The secondary ratings must correspond to the rated input voltage and current specified for feature 10, respectively 11.

Output A

Part 1 (power, power factor, frequency)
13. Measured variable Type: \qquad
\qquad $\mathrm{X} 2=$ \qquad
Part 2 (current, voltage)
14. Measured variable

Type: \qquad $X 0=$
X2 =
15. Output signal
16. Characteristic linear / bent
17. Limits
$X 1=$ \qquad $\mathrm{Y} 1=$ \qquad

Output B (not used with type M561)
Part 1 (power, power factor, frequency)
18. Measured variable Type: \qquad

$X 0=\square$	$X 2=\square$
$X 0=\square$	$X 2=\square$
$Y 0=\square$	$Y 2=\square$
$X 1=\square$	Y Y1 $=\square$
Standard $/ \mathrm{Ymin}=\square$	

Output C (not used with type type M561 and M562)
Part 1 (power, power factor, frequency)
23. Measured variable

Type: \qquad $\mathrm{X} 2=$
Part 2 (current, voltage)
24. Measured variable

Type:
$X 0=$
X2 = \qquad
25. Output signal
$\mathrm{YO}=$
Y2 =
26. Characteristic linear / bent
27. Limits
$X 1=$ \qquad $\mathrm{Y} 1=$ \qquad
Standard $/$ Ymin $=$
Ymax = \qquad

Order example see on next page1!

Order example type SINEAX M563:

Codes for features 1 to 8 :

ITEM	Description	MARKING
$\mathbf{1 .}$	Mechanical design Housing P20/105 for rail mounting	$563-4$
2.	Nominal input frequency 50 Hz	1
3.	Power supply / Connection $85 \ldots 230 \mathrm{~V} \mathrm{DC/AC}$	$\mathrm{Y} 2=20 \mathrm{~mA}$
4.	Output signal final value, output A	$\mathrm{Y} 2=20 \mathrm{~mA}$
5.	Output signal final value, output B	$\mathrm{Y} 2=20 \mathrm{~mA}$
6.	Output signal final value, output C	2
$\mathbf{7 .}$	Without test records	1
8.	Configuration, programmed to order	1

Codes for features 9 to 27:
Features 9 to 27 concern data for configuring the software.

ITEM	Description				MARKING
9.	Application System 4-wire, 3-phase asymmetric load				H
10.	Nominal input voltage, rated value$\mathrm{Ur}=400 \mathrm{~V}$				Z
11.	Nominal input current, rated value lr $=2 \mathrm{~A}$				9
12.	Primary rating $\mathrm{VT}=4 \mathrm{kV}, \quad \mathrm{CT}=200 \mathrm{~A}$ Specify transformer ratio primary, e.g. $4 \mathrm{kV}, 200 \mathrm{~A}$ The secondary ratings must correspond to the rated input voltage and current specified for feature 10 , respectively 11 .				9
13.	Output A Part 1 (power, power factor, frequency) Measured value Type: P1 $X 0=-500$ X2 $=500 \mathrm{~kW}$				2
14.	Part 2 (current, voltage) Measured variable, meas. range Type: / Signal range, system response		X0 = /	$\mathrm{X} 2=1$	0
15.			$\mathrm{YO}=-20$	$\mathrm{Y} 2=20 \mathrm{~mA}$	1
16.	Characteristic linear / kinked		X1 = /	Y 1 = /	1
17.	Limitation		Standard $/$ Ymin $=/$	Ymax $=1$	1
18.	Output B Part 1 (power, power factor, frequency)				0
19.	Part 2 (current, voltage) Measured variable, meas. range Type: IB1 (15 min)		$X 0=0$	$\mathrm{X} 2=200 \mathrm{~A}$	6
20.	Signal range, system response		$\mathrm{YO}=0$	$\mathrm{Y} 2=20 \mathrm{~mA}$	2
21.	Characteristic linear / kinked		X1 = /	Y1 = /	1
22.	Limitation		Standard $/ \mathrm{Ymin}=/$	Ymax $=1$	1
23.	Output C Part 1 (power, power factor, frequency)		$X 0=0$	$\text { X2 }=600 \mathrm{kVA}$	B
24.	Part 2 (current, voltage)				0
25.	Signal range, system response		$\mathrm{YO}=0$	$\mathrm{Y} 2=20 \mathrm{~mA}$	2
26.	Characteristic linear / kinked		X1 $=400 \mathrm{kVA}$	$\mathrm{Y} 1=4 \mathrm{~mA}$	9
27.	Limitation		Standard $/$ Ymin $=/$	Ymax $=1$	1

[^0]: ${ }^{1)}$ Basic accuracy 1,0 c for applications with phase-shift

[^1]: The complete Order Code according to "Table 3: Ordering information" should be stated for other versions..

[^2]: Table 3 continued on next page!

[^3]: * Basic accuracy 1.0 c

