- 64 processing channels
physical inputs or LON meter outputs can be assigned for the calculation of energy, power and costs
- Energy Control Language
for the programming of analysis, monitoring and optimization applications
- 12 universal inputs: $\pm 5 \mathrm{~mA}, \pm 20 \mathrm{~mA}, \pm 10 \mathrm{~V}, \mathrm{~S} 0$ pulse
- LON interface for 63 LON devices
- 2 analog outputs: $\pm 20 \mathrm{~mA}$ or $\pm 10 \mathrm{~V}$
- 2 relays and 4 MOS switches for the control of external processes
- 2 RS232 interfaces ($115 \mathrm{kBit} / \mathrm{s}$)
for the connection of PC, modem, printer or radio-controlled clock
- 2 ECS LAN interfaces
for the interconnection of individual summators over large distances
- Simple software updates via serial interface (Flash)

Applications

The U1601 summator expands the Energy Control System (ECS) to include the processing of analog values and simplifies the interconnection of energy meters via the LON bus. All electrical and non-electrical energy and energy consumption can thus be logged, visualized, optimized and billed to individual cost centers.

Signal and Meter Inputs

A maximum of twelve analog or pulse-shaped signals can be fed into the summator, which originate from, for example, flow meters, energy meters and heat meters. Power supply to the pulse outputs is accomplished with an integrated 24 VDC auxiliary voltage supply.
Furthermore, up to 63 LON devices can be connected to the U1601 summator with the easy-to-wire, polarity-reversal-protected, electrically isolated LON interface:

- Multifunctional power meter

A2000

- Programmable multi-measuring transducer DME 400
- Electricity meters U1681, U1687, U1689, U128x W1, U138x W1, U228x W1, U238x W1 new!
- Meter reading module

U1660

- Analog input module

U1661

- Relay output module

OCL210 by Littwin

Analysis

64 processing channels calculate work, power or consumption with the above-mentioned, freely assignable physical inputs. These values are summated over a defined period of time at a programmed interval, and are stored together with the corresponding maximum values.

Operation

Two electrically isolated analog outputs, four MOS switches and two relays (changeover contacts) are available for the control of external processes, which can be operated either directly via the user-specific summator background program, or via the interface at the PC. Data exchange with the PC, or remote query via modem, is accomplished with the high-speed RS232 interface ($115 \mathrm{kBit} / \mathrm{s}$). A radio-controlled clock can also be connected for system time synchronization, as well as a report printer.

Networking

Individual summators can be interconnected over large distances with the multi-master-compatible ECS LAN and thus have unrestricted access to all network user data.

Universal Application

Thanks to integrated high-level intelligence and the systemspecific programming language, Energy Control Language (ECL), the U1601 summator is also suitable for applications outside of the Energy Control System. These include the monitoring of distant systems and machines, as well as support for service calls and maintenance work with remote querying via modem.

Variable Installation

The compact housing and the protection type have been designed for rugged industrial use, and allow for mounting to a top-hat rail in accordance with EN 50022. It can also be wall mounted with screws or integrated into the control panel. Easy installation is facilitated through the use of plug-in screw terminals.

ECS ENERGY. CONTROL•SYSTEM

Applicable Regulations and Standards

EN 61010-1	Safety regulations for electrical measuring, control, and laboratory devices
DIN 43864	Current interface for pulse transmission between impulse meters and tariff devices
VDE 0470 Part 1	IP protection provided by enclosures (DIN 40050)
IEC 68 Part 2-6	Basic environmental test procedures Sinusoidal oscillation
UL 94	Test for flammability of plastic materials for parts in devices and appliances
EMC Standards	see Technical Data

Symbols and their Meanings

Symbol	Meaning
X	Measured quantity, analog input
X2	Measured quantity upper range value
Y	Output quantity, analog output
Y2	Output quantity upper range value

Memory Capacities per Channel

Energy

Cumulative Energy as of a Defined Starting Point	
E total	independent of tariff
E total T1	from tariff 1 only
E total T2	from tariff 2 only
E total T1T2	from tariff $1+$ tariff 2
Cumulative Energy for	Defined Time Periods
E Day	for the current day and each of the last 10 days
E Month	for the current month and each of the last 12 months
E Year	for the current year and each of the last 4 years
E int	for all stored measuring intervals (measurement data list)

Measuring Interval Maximum Values with Date and Time

E maxint	the 10 highest values for all measuring intervals as of a defined starting point
E maxDay	respective daily peak values for the current day and the last 10 days
E maxMonth	respective daily peak values for the current month and the last 12 months
E maxYear	peak value for the current year, and peak values for the last 4 years

Costs

Cumulative Costs as of a Defined Starting Point	
CostT1	from tariff 1 only
CostT2	from tariff 2 only
CostT1T2	from tariff $1+$ tariff 2

Power

Instantaneous Value	
P inst	determined by means of the time interval between the last two meter pulses (when connected to E1 ... E12)
Measuring Interval Mean Values	
P int	for all stored measuring intervals (measurement data list)
Measuring Interval Maximum Values with Date and Time	
P maxint	the 10 highest values for all measuring intervals as of a defined starting point
P maxDay	respective daily peak values for the current day and the last 10 days
P maxMonth	respective daily peak values for the current month and the last 12 months
P maxYear	peak value for the current year, and peak values for the last 4 years

Technical Data

Inputs

The 12 inputs can be individually configured with DIP switches.

Analog Input (current)	
Input quantity	direct current
Design	electrically isolated
Input range	$-\mathrm{X} 2 \leq \mathrm{X} \leq+\mathrm{X} 2$
Upper range value X2	$5 \mathrm{~mA} / 20 \mathrm{~mA}$
Max. input current	$\leq 2.5 \mathrm{X} 2$
Control limit	$\pm 1.25 \mathrm{X} 2$
Input resistance	
X2: 20 mA	75Ω
X2: $\quad 5 \mathrm{~mA}$	300Ω
Common mode rejection	$\geq 80 \mathrm{~dB}(\leq 120 \mathrm{~Hz})$

Analog Input (voltage)	
Input quantity	direct voltage
Design	electrically isolated
Input range	$-\mathrm{X} 2 \leq \mathrm{X} \leq+\mathrm{X} 2$
Upper range value X2	10 V
Max. input voltage	$\leq 30 \mathrm{~V}$
Control limit	$\pm 1.25 \mathrm{X} 2$
Input resistance	$118 \mathrm{k} \Omega$
Common mode rejection	$\geq 80 \mathrm{~dB}(\leq 120 \mathrm{~Hz})$

ECS ENERGY • CONTROL • SYSTEM

Binary Input	Direct voltage (square-wave pulse, SO compatible)
Input quantity	electrically isolated
Design	Signal level: $\mathrm{L}: 0.5 / 1.25 / 2.5 / 3.5 \mathrm{~mA}$
Operating point (adjustable)	$\leq 48 \mathrm{~V}$
Max. input voltage permanent short-term (t $\leq 1 \mathrm{~s}$) $\leq 60 \mathrm{~V}$	
Series resistance (internal)	$4.7 \mathrm{k} \Omega$
Admissible switching elements	Semiconductor switching device, relay
Pulse duration $\mathrm{T}_{\text {on }}$ (adjustable)	$10 \ldots 2550 \mathrm{~ms}$
Interpulse period $\mathrm{T}_{\text {off }}$	$\geq 2 \mathrm{~ms}$
Pulse frequency	$\leq 250 \mathrm{~Hz}$

Outputs:

The 2 analog outputs can be individually configured with DIP switches

Analog Output (Current)	
Output quantity	direct current
Design	electrically isolated
Output range	$-\mathrm{Y} 2 \leq \mathrm{Y} \leq+\mathrm{Y} 2$
Upper range value Y2	20 mA
Max. output voltage	$\leq 30 \mathrm{~V}$
Max. output current	$\leq 25 \mathrm{~mA}$
Load range	$0 \leq \underline{250 \Omega} \leq 400 \Omega$

Analog Output (Voltage)	
Output quantity	direct current
Design	electrically isolated
Output range	$-\mathrm{Y} 2 \leq \mathrm{Y} \leq+\mathrm{Y} 2$
Upper range value Y2	10 V
Max. output voltage	$\leq 12.5 \mathrm{~V}$
Max. output current	$\leq 40 \mathrm{~mA}$
Load range	$2.5 \mathrm{k} \Omega \leq \underline{5 \mathrm{k} \Omega}<\infty$
Ripple content	0.5%

Switching Output (Binary)	
Switching element	semiconductor relay
Design	electrically isolated, passive
Number	4
Switching voltage	$\leq \pm 50 \mathrm{~V}$
Switching current ON OFF	$\leq 200 \mathrm{~mA}$ $\leq 10 \mu \mathrm{~A}$
Volume resistance (AC/DC)	5Ω

Switching Output (Relay)	
Switching element	relay (changeover contact)
Design	electrically isolated
Number	2
Switching voltage	$250 \mathrm{~V} \sim, 30 \mathrm{~V}=$
Switching current	8 A resistive, 3 A inductive
Operating cycles	$\leq 10^{5}$

Power Supply to External Switching Contacts	
Voltage U U (electrically isolated)	$24 \mathrm{~V}=$
Voltage tolerance	$\leq \pm 4 \%$
Current (short-circuit and idling-proof)	$\leq 0.15 \mathrm{~A}$
Ripple content ($\leq 100 \mathrm{kHz}$)	$\leq 2 \%$

RS 232 Interface (PC / Printer)

Number	1 (channel A and channel B)
Connectors	plug connector, sub miniature D9 plug
Possible Connections channel A	ECL, modem, terminal, radio-controlled clock
Possible Connections channel B	ECL, printer, radio-controlled clock
Number of data bits	8
Transmission speed COM1/COM2:	$1200 \ldots 115000$ bit/s
Parity	even / no check
Operating mode	FDX Handshake Xon/Xoff or RTS / CTS

ECS LAN Interface (Summator Interconnection) (RS 485)

Number	2
Connectors	plug connector with screw terminals (up to 255 users)
Users per segment	16 (32 at loop resistance $<100 \Omega$)
Operating mode	multi-master, HDX or FDX
Data protocol	HDLC/SDLC (adapted to multi-master requirements)
Topology (line and/or open ring)	$\leq 1200 \mathrm{~m}$ open ring $\leq 100 \mathrm{~m}$ mix
Transmission speed (hamming distance $=4)$	$15.6 \ldots 375$ kbps
Status display	2 LEDs
Matching resistor	can be activated

LON Interface (Connection of Meters)

Number	1 (FTT-10, twisted 2-conductor cable)
Connectors	plug connector with screw terminal (up to 63 users per station)
Operating mode	LonTalk protocol (CSMA)
Cable lengths	wiring as desired $\leq 500 \mathrm{~m}$ bus, terminated $\leq 2700 \mathrm{~m}$ with special cable Transmission speed
Status display	18 kbps
Bus terminating element	can be activated; $50 / 100 \Omega$

Display

Display element	graphic LCD, 128×128 (illuminated)
Format	21 characters, 16 lines

Measurement Value Storage

Storage method	consecutive
Memory depth	with 2 channels 87380 entries with 64 channels 3971 entries
Memory life span	with back-up battery ≥ 5 years (see also auxiliary power supply - back-up battery)
Resetting of Meters to Zero	via PC or device keyboard

ECS ENERGY . CONTROL • SYSTEM

Time Generator for Date and Clock

Smallest unit of time	1 s
Admissible deviation	$10 \mathrm{ppm}=5.3 \mathrm{~min} /$ year

Functions Monitoring

Status display	via LED at front panel
Status relay	changeover contacts
Switching voltage	$250 \mathrm{~V} \sim, 30 \mathrm{~V}=$
Switching current	8 A resistive, 3 A inductive
Operating cycles	$\leq 10^{5}$

Electromagnetic Compatibility

Transmission behaviour

Accuracy class	(with reference to the upper range value)
Analog input/output	0.25\%
Binary input/output	± 1 pulse
Cycle time analog meas. channels LON 1 channel LON 64 channels	$\begin{aligned} & \leq 2 \mathrm{~ms} \\ & \leq 1 \mathrm{~s} \\ & \leq 10 \mathrm{~s} \end{aligned}$

Influencing Quantities and Influence Errors

Influencing Quantity	Nominal Range of Use	Admissible Influence Error as Percentage of Accuracy Class
Temperature	$10^{\circ} \mathrm{C} \ldots \underline{22-24 \ldots 40^{\circ} \mathrm{C}}$	50% $0^{\circ} \mathrm{C} \ldots \underline{22-24} \ldots 55^{\circ} \mathrm{C}$
Output load	load range	20%
Auxiliary voltage	nominal range of use	10%

Resistance to Climatic Conditions

Relative humidity	75%, no condensation allowed
Temperature range	
Operation/function	$-10^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C}$
Storage, transport	$-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
Elevation	up to 2000 m

Electrical Safety

Safety class	I according to EN 61 010-1:1993/A2:1995
Overvoltage category	III
Nominal insulation voltage:	
Input	50 V
Output: analog, binary, Uv	30 V
Output: relay	250 V
Interfaces	50 V
Auxiliary voltage, AC	265 V
Auxiliary voltage, DC	80 V
Test voltages:	
Input housing	0.5 kV
Input/output	0.5 kV
Auxiliary voltage input	3.7 kV
Input relay	3.7 kV

Auxiliary Power Supply

Wide-Range Input, AC - DC	
Nominal range of use, AC (45 ... 420 Hz)	$85 \mathrm{~V} \ldots 264 \mathrm{~V}$
Nominal range of use, DC	$100 \mathrm{~V} \ldots 280 \mathrm{~V}$
Power consumption	$\leq 15 \mathrm{~W}(25 \mathrm{VA})$
Fuse	2 A slow-blow
Direct Voltage Input (optional)	
Nominal range of use, DC	$20 \mathrm{~V} \ldots 72 \mathrm{~V}$
Power consumption	$\leq 15 \mathrm{~W}$
Fuse	$2 \mathrm{~A} \mathrm{slow-blow}$
Back-Up Battery	
Lithium cell (replaceable without tools and without data loss)	CR 2450
Service life without auxiliary voltage at $20^{\circ} \mathrm{C}$	≥ 5 years
Capacity loss after 5 years with auxiliary voltage at $20^{\circ} \mathrm{C}$	$\leq 15 \%$

Mechanical Design

Housing material	aluminum sheet
Dimensions	$212 \mathrm{~mm} \times 125 \mathrm{~mm} \times 85 \mathrm{~mm}$
Mounting position	as desired
Mounting	to top-hat rail per EN $50022 / 35 \mathrm{~mm}$ or screw mounted to plate
Protection	housing: IP 40 terminals: IP 20
Weight	1.6 kg

Figure 1 Dimensions

ECS ENERGY . CONTROL • SYSTEM

Electrical Connection

Signal Cables

Connectors	screw terminals
Admissible connector cable cross section	$2.5 \mathrm{~mm}^{2}$

Auxiliary Voltage Cables

Connectors	Screw terminals (L and N or + and -)
Admissible connector cable cross section	$2.5 \mathrm{~mm}^{2}$
Protective conductor	6.3 mm cable lug

Terminal Assignments

- Analog / So												Relay $\mathbf{1}$ $\Gamma \quad 7$ 252627				
+ E1	+ E2	+ E3	+E4	+E5	+ E6	+ E7	+ E8	+ E9	+E10	+E11	+512					
12	34	56	78	9101	1112	1314	15161	1718	19202	2122	2324			$\begin{aligned} & 85.264 \mathrm{~V} \\ & A C 45.420 \mathrm{~Hz} \\ & A C / / \mathrm{DC} \end{aligned}$		
\bigcirc Analog		Θ S0				UV	LANL		L AN R		LON	Status			$\ddagger U_{H} \succsim$	
+ A1	+ A2	+ S1	+ S2	+ S3	+ S4	+24V	+ EA	+E	+ EA	+E	A B		$\checkmark \neg$		$\mathrm{L} \quad \mathrm{~N}$	20.72 V
3132	33\|34	-35 36	3738	3940	4142	43 44	44546	47148	84950	5152	53154		555657		58.5960	DC

Terminal	Function	Designation
1	input E1	+
2	input E1	-
3	input E2	+
4	input E2	-
5	input E3	+
6	input E3	-
7	input E4	+
8	input E4	-
9	input E5	+
10	input E5	-
11	input E6	+
12	input E6	-
13	input E7	+
14	input E7	-
15	input E8	+
16	input E8	-
17	input E9	+
18	input E9	-
19	input E10	+
20	input E10	-
21	input E11	+
22	input E11	-
23	input E12	+
24	input E12	-
25	relay 1	$0 ̈$
26	relay 1	W
27	relay 1	Sch
28	relay 2	0 O
29	relay 2	W
30	relay 2	Sch

Terminal	Function	Designation
31	output A1 analog	+
32	output A1 analog	-
33	output A2 analog	+
34	output A2 analog	-
35	output S1 binary (S0)	+
36	output S1 binary (S0)	-
37	output S2 binary (S0)	+
38	output S2 binary (S0)	-
39	output S3 binary (S0)	+
40	output S3 binary (S0)	-
41	output S4 binary (S0)	+
42	output S4 binary (SO)	-
43	supply to ext. switching contacts	$+24 \mathrm{~V}$
44	supply to ext. switching contacts	0 V
45	LAN, Left	EA+
46	LAN, Left	EA-
47	LAN, Left	E+
48	LAN, Left	E-
49	LAN, Right	EA+
50	LAN, Right	EA-
51	LAN, Right	E+
52	LAN, Right	E-
53	LON	A
54	LON	B
55	status relay	0
56	status relay	W
57	status relay	Sch
58	auxiliary power supply	L/+
59		
60	auxiliary power supply	N/-

U1601

ECS ENERGY • CONTROL•SYSTEM

Meter Input and Output Configuration

The analog inputs and outputs can be adapted to the desired measuring range with DIP switches.

Parameter settings for the respective upper range limits are accomplished with the firmware.

$\begin{array}{\|l\|l\|l\|} \hline 10 \mathrm{~V} & \mathrm{~d} \\ \hline 20 \mathrm{ma} \\ \hline \end{array}$	E1	E2	E3	E4	E5	E6	E7	E8	E9	E10	E11	E12
5 mA 況碞	65			32		2.		32		22		,
S0 If			5	32	65	21				321		

COM1 Pin Assignments for Sub Miniature D9 Plug

C0M2 Pin Assignments for Sub Miniature D9 Plug

Pin Number	Function
1	
2	
3	TXD
4	signal ground
5	CTS
6	
7	
8	RXD
9	

COM

The cable with the designation Z5232000R0001 must be used for the connection of a PC or a terminal.

ECS ENERGY • CONTROL • SYSTEM

Summator Configuration

Configuration of the U1601 summator is clearly structured. Distinction is made between 5 different configuration groups (see figure 2, SETUP PARAMETERS).
The "general" parameters apply to all of the summators, and are thus superordinate in nature, whereas the "channel specific" parameters are directly associated with each individual channel.

The configuration groups "RS 232" and "ECS LAN" apply to the serial interface (RS 232) and the ECS LAN system bus (Energy Control System Local Area Network).
A six character password protects the individual parameters against unauthorized modification.

Basic Configuration
Setup Parameters

STATION	CHANNELS	RS-232	ECS-LAN	LON
	$\begin{equation*} 1 \tag{64} \end{equation*}$			
time/date station name station ID time interval interval source tariff source tariff unit tariff fixed decimal cost factor T1 cost factor T2 \qquad password LCD contrast language date format \qquad relay mode analog output test SO level bootstrap and tests	CHANNEL: mode (OFF, meter, LON) channel name long name E unit P unit chan. visibly on / off channel start / stop fixed decimal K factor meter constant U ratio I ratio P factor pulse duration edge LON CHANNEL: sub-channel LON activity neuron ID LON factor LON offset ANALOG CHANNEL: Ana factor Ana offset Ana sign I/O range select unit of measure A unit Ana fixed decimal resolution Ana interval (A1, A2, command: ANAINT)	COM1: mode baud rate parity handshake \qquad COM2: mode baud rate parity handshake	ECS LAN, left: mode terminated (yes/no) baud rate ECS LAN, right: mode terminated (yes/no) baud rate	new installation subnet/node address timing code poll delay bus terminator

Figure 2 Setup Parameters

ECS ENERGY • CONTROL • SYSTEM

Order Information

The following applies to the selection of order numbers:

- only one designation with the same given letter may be selected
- if the capital letter in the designation is followed by zeros only, the designation need not be included in the order

Order Example

Either the description or the designation can be entered into the order.

Description (plain text)	Designation				
U1601 Summator	with bus connector, serial interface and 12 universal inputs, LON interface	U1601			
Auxiliary Voltage	DC nominal range of use 20 V ... 72 V	H2			
Operating Instructions and Commands Register	English	W2			

Accessories

Description	Designation			
Connector Cable	GOC or terminal	GTZ5232000R0001		

